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ABSTRACT 

A sensitivity approach to study the dynamic interaction of floor-light 
steel-equipment system is presented. The analysis is conducted in two 
phases: 1) free-vibration sensitivity analysis, and 2) seismic response 
sensitivity analysis. Particular attention is given to the effects of 
the light-steel that connects the equipment to the floor. The damped 
frequencies of the structure (floors) equipment system are obtained using 
the complex interpotation on a unit circle together with the powerful 
Jenkins-Traub algorithm. The sensitivity of the frequencies to parameter 
variations is investigated. The response of the system to strong ground 
motion is studied. The sensitivity equations for the seismic response 
are developed and solved simultaneously with the system equations of 
motion to obtain the response history sensitivity function. The results 
obtained herein are used to examine the conservatism of the decoupling 
criteria of the CSA N289.3 standard. Finally, conclusions and 
recommendations are given. 

1.0 INTRODUCTION 

In seismic analyses of nuclear power plant structures, because typical 
structural systems are, in many cases, dynamically coupled, the required 
size of an integrated seismic model may become so large that it is 
Impractical. To keep the size of the model within practical limits, the 
physical interconnection between structural system and equipment or 
mechanical system is often disregarded. Significant differences may, 
however, occur in the estimation of the dynamic behaviour of the 
uncoupled system from the dynamic behaviour of the integrated system 
(coupled). Such differences, herein termed dynamic interaction effects, 
may cause the response of the coupled system to be significantly 
different from the uncoupled dynamic responses of the structural system 
and the component (equipment) subsystem. Dynamic interaction effects are 
particularly important in nuclear equipment design because of safety 
requirements and, furthermore, because components are attached to rather 
elaborate support systems and other components, either directly such as 
pump motor drive assemblies or indirectly through complex piping systems 
such as the primary coolant loops[1]. A single seismic model of such 
large systems may become unmanageable, especially at the preliminary 
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design stage. Disregarding interaction effects at the preliminary design 
stage, although expedient, may not ensure reasonable conservatism. On 
the other hand, a detailed seismic model may be neither feasible nor 
desirable. An alternative approach is to include a simplified model of 
the subsystem, which correctly represents its stiffness and mass effects, 
in the primary system dynamic model. The resulting motion of the 
subsystem support locations are then used as forcing functions for 
separate and more detailed subsystem analysis. This approach enables the 
analysts to use more detailed subsystem mathematical models when 
performing either spectrum analysis or time history analysis of the 
subsystem, while accounting for dynamic interaction between the system 
and the subsystem. Methods for decoupling the responses of light 
subsystem from massive structural system have been suggested by 
Pal et-al[l], Gerdes[2], and Aziz et-al[3]. The decoupling criterion 
adopted by the CSA standard CAN3-N289.3-M81 [4] is that suggested in 
Ref 3. In this criteria, if the subsystem mass is larger than 1 percent 
of the structural mass, decoupling is acceptable if 

0 - 1 
for , 0 1.0 

0 

- 0 
, for 0 < 1.0 0 

are satisfied. Where /1 and 0 are the ratios of the modal mass and of 
the modal frequency squared respectively. It is the objective of this 
paper to present a novel approach in studying the problem of dynamic 
interaction of structure-equipment system, to examine the validity of 
code formulae for decoupling, and to investigate the effects of 
light-steel on the dynamic interaction of the structure-equipment system. 

2.0 MATHEMATICAL MODEL AND EQUATIONS OF MOTION 

The simplified lumped mass model for the structural-equipment system is 
shown in Fig (l)a. The equipment model is shown in Fig (1)b and the 
equipment-light steel model in Fig (1)c. 

The equations of motion of the system shown in Fig (1)a can be written as 
follows: 

[M] V + [C] Y [K] Y = -[M] D ag (1) 

In which [M],[C], and [K] are mass, damping, and stiffness matrices 
respectively. D is a vector with elements =1 and ag is the ground 
acceleration. 
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2.1 Free-Vibration and Sensitivity Formulation  

The equations of free-vibrations can be obtained by replacing the right 
hand side term of Eq. (8) by 0 (zero vector), i.e.: 

[M] Y + [C]i+ [K] Y = 0 (2) 

Eq. (2) is transformed into a generalized eigenvalue problem using 
Laplace-Carson integral transformation, i.e. multiply the equation by 
e-  At, integrate each of its terms with respect to t between 0 and 00o 
and then multiply it by X (where X is a variable in the complex 
plane). This leads to 

• 
X2[M] +X [C] + [K] )Y = 0 (3) 

where Y is the vector Y in the frequency domain. A non-trivial solution 
of Eq. (3) requires 

det.( X2[14] + X [C] + [K] ) = 0 (4) 

or 

det-A( X,h) = 0 (5) 

where A is a matrix ploynomial in X , X's are variables in the complex 
plane, and h is vector of parameters. The roots of Eq. (5) (eigenvalues) 
are obtained as follows: 

1. The coefficients of the characteristic polynomial Eq. (5) are 
obtained by complex interpolation. Suppose n is the maximum 
degree of the polynomial (Eq. 5); then select (n+l) points 
uniformly spaced on a unit circle in the complex plane. The 
equivalent interpolation problem is subsequently transformed 
into a discrete Fourier transform [5]. It is of interest to 
note that the unit circle interpolation is numerically very 
stable. The computation time and accuracy of interpolation 
using various point sets were investigated in Ref. 5, and it was 
found that the unit circle interpolation was by some orders of 
magnitude superior both in accuracy and time requirements to any 
other method considered. 

2. Once the characteristic polynomial has been obtained, any of the 
well known root finding algorithms could be used to generate the 
eigenvalues. The methods of Muller, Biarstow, Laguerre, and 
Jenkins-Traub were investigated in Ref. 6. It has been found 
that the Jenkins-Traub algorithm is the best, not only because 
it is reliable and fast but also because: a) it is globally 
convergent for real and complex roots, and b) the roots are 
found in increasing order of a magnitude so that the computation 
can be terminated when the dominant roots have been evaluated. 
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Sensitivity  

Referring to Eq. (5), the sensitivity of the eigenvalue, Xk, to some 
parameter qi in the set his defined as ax ki a qi  and can be 
determined as follows: 

Corresponding to the eigenvalue, k k, there exist right and left 
eigenvectors u and v such that 

[A] u = 0 (6) 
and, 

[A]T v = 0 (7) 

Differentiating Eq. (6) with respect to qi leads to 

a [A] 
 u 

 

a qi 

a xk [A] 
u + [A] — 0 

a qi 
(8)  

aqi a x k 

Premultiply Eq. (8) by vT and use Eq. (7) to get the sensitivity 
equation. 

a xk
vT 
 a [A]  u vT  a [A]  

a qi aqi axk 
(9)  

The right, u, and left, v, eigenvectors can be obtained as follows: 

Factor A as L U were L is the lower triangular and U is unit 
upper triangular. As X is an eigenvalue then inn  = 0, n 
being the dimension of A. 

2. Normalizing u and v such that their last component is one. The 
u and v are the solutions of 

U u = en (10) 

and, 

LI z = en (11) 

where en  is the unit vector with one in the location n and 
LI is the same as L with Inn  replaced by unity. Eqs. (10) 
and (11) can be solved for u and v by one back substitution 
each. FUrther, these vectors are generated only once and used 
in Eq. (9) for different parameters qi in the set h. Now, let 

qi, be a deviation in the nominal value of q1  ; then using 
the sensitivity function Eq. (9), the error or the corresponding 
deviation in the eigenvalue k is given by 
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a Mt  
X k A qi a qi 

(12) 

2.2 Seismic Response and Sensitivity Formulations  

An artificial earthquake record ag, may be used as input signals for the 
seismic analysis of structural-equipment system, Eq. (1). This equation 
could be solved directly by numerical integration of the coupled 
equations; however, in analyzing the earthquake response of linear 
structures, it is generally much more efficient to transform to a system 
of modal coordinates because the support motions tend to excite strongly 
only the lowest modes of vibrations. Thus good approximation of the 
earthquake response of systems having large number of degrees of freedom 
can often be obtained by carrying out the analysis for only a few modal 
coordinates. In this analysis the damping matrix is assumed to be 
proportional to the mass matrix to satisfy the orthogonality conditions. 

Subroutine "DVERK" (based on Runge-Kutta methods) from TINSL is used to 
integrate the resulting uncoupled equations of motion in the time 
domain. The Runge-KUtta methods handles first order differential 
equations which means that the higher order equations must be reduced to 
first order before proceeding with the solution. Accordingly, the 
equations of motion can be reduced to the following form: 

= f (z, t, h), z(o) = zo (13) 
ONJ 

where h is the vector of parameters. 

Sensitivity  

To determine the sensitivity of z to perturbations in q (where q is a 
parameter in h), Eq. (13) can be differentiated with respect to q to yield 

a aA a,4  
a q  at az aq aq 

This equation is valid if q is independent of t. Now, provided that the 
dependent variable z is continuous and differentiable in both t and q, 
the order of the differentiation in Eq. (14) can be interchanged so that 

a _ + _s2.1  
at a q aq aq 

clearly, the derivative az/ a q reflects the influence of changes in 
the parameter on the solution z and is referred to the sensitivity 
function. LettingS= az/aq, Eq. (15) becomes 

g - s _ILL s(0) = 0 (16) a z q 

(14)  

(15)  
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Eqs. (16) are termed the "sensitivity equations" whose solutions are the 
sensitivity functions S = az/a q. 

Eqs. (13) and (16) are solved simultaneously to obtain the seismic 
response of the system and their time history sensitivity functions. 

Computer Solution  

A computer program was written to perform the calculations required to 
compute the natural damped frequencies, their sensitivities, the mode 
shapes, artificial earthquake records, seismic responses, and their time 
history sensitivity functions. The program was written in the FORTRAN IV 
and was run on UNIVAC Computer System. 

3.0 RESULTS 

The objective of this section is to report some of the analytical results 
on the dynamic interaction of structural-equipment system. The numerical 
analysis is done in two phases. In the first phase a free-vibration 
sensitivity analysis is carried out to examine the validity of the code 
decoupling criteria for the case of multi-degree of freedom system and to 
investigate the influence of the light-steel on the dynamic interaction 
of the structure-equipment system. In the second phase, the seismic 
response of the structural-equipment system is investigated to illustrate 
the dynamic interaction effects during a strong ground motion. In the 
following paragraphs, the results are summarized and discussed briefly. 
For convenience of reference, the parameters that are used in the 
following discussion are defined as follows: 

1. Mr  = mass ratio = Me/Mf, where Me  is the equipment mass 
(or equipment mass + light-steel mass) and Mf is the floor 
mass. 

2. Fr  = normalized frequency ratio = Wei/We  (max), where 
Wei is the equipment frequency. In this study the range of 
Wei is given by 8 rad/sec < W61  > 200 rad/sec, and 
We  (max) = 200 rad/sec. 

It should be noted that the basic assumption used herein is that 
decoupling is allowed if the variations in the response of the coupled 
system are less than 10 percent of that of the uncoupled system. 

3.1 Free Vibration 

The relation between Mr  and Fr, based on the code formulae, is shown 
in Fig (2). The same relationship is plotted in Fig (3), based on the 
complex interpolation-sensitivity analysis, as discussed in Section 2, 
when the equipment is attached to different locations of the structural 
system. Further, by comparing these results, as illustrated in Fig (4), 
the following observations can be made: 
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1. Ming the first mode (code) may lead to non-conservative 
results. However, a very conservative solution would result 
from using higher modes. 

2. The lower bound solution for Mt. occurs when the equipment is 
attached to the top floor. 

The influence of the light-steel on the dynamic interaction is 
illustrated in Fig (5). The light-steel is assumed to be stiff and have 
a constant frequency of 220 rad/sec. Further, the practical limit of the 
light-steel mass is assumed, herein, to be about 20 percent of the 
equipment mass. By means of the curves in Fig (5) the following 
observations can be made: 

1. The presence of light-steel tend to reduce the mass ratio Mr. 

2. At Fr  = 0.137 (first resonance), the mass of the equipment is 
about 20 percent less than that when the equipment is directly 
attached to the structural system. 

3.2 Seismic Response  

To illustrate the influence of the equipment-light-steel system on the 
dynamic interaction, the acceleration time history of the top floor of 
the structure, structure-equipment, and structure-light-steel-equipment 
systems, under the action of the strong ground acceleration of Fig (6), 
are plotted in Figs (7), (8) and (9), respectively. As the figures 
suggest, the equipment bears a strong effect on the response of the 
structure and that the light-steel has a negligible effect on the 
response. 

4.0 CONCLUSIONS 

Based on the studied system, Fig (1), the following preliminary 
conclusions may be reached: 

1. The code formulae are generally conservative when the higher 
modes are used. 

2. The light-steel tends to reduce the mass ratio. It bears, 
however, a small effect on the seismic response. This 
conclusion is based on a stiff light-steel system. The results 
could be different if a flexible light-steel system is used. 

3. The sensitivity approach presented in this paper is a novel 
approach in application to structures subjected to seismic 
loads. For a safety related system, it is useful to know the 
parameter sensitivity prior to its implementation or to reduce 
the sensitivity systematically if this turns out to be necessary 
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(safety related system should be insensitive to parameter 
variations). Therefore, parameter sensitivity computations 
should be part of the design to any safety related structural or 
mechanical system. 
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